隐花菁染料的温度、溶剂、杂质含量 对红宝石激光器输出性能影响 的理论分析

赵燕曾

(中国科学院大气物理研究所)

提要:本文对隐花菁Q开关红宝石器件中染料温度、溶剂、杂质含量对于器件动态输出大小的影响进行了理论分析和数值模拟。结果表明,温度、溶剂、杂质效应的基本原因在于染料激发态的吸收,而其中S1→S2的跃迁是主要的。 隐花菁的光学漂白程度主要决定于S1→S2的吸收饱和,同时也受到三重态的调节。因此,隐花菁调Q红宝石器件热稳定的主要控制因子是溶剂对染料单态激发态的猝灭速率。

Theoretical analysis of effects of temperature, solvent, impurity concentration of cryptocyanine on the output performance of ruby lasers

Zhao Yanzeng

(Institute of Atmospheric Physics, Academia Sinica)

Abstract: Theoretical analysis and numerical simulation calculations have been carried out to explain the dependence of ruby laser output on temperature, solvent and impurity of cryptocyanine solution used as the passive-Q-switch. The results show that the absorption of excited state is the main cause of the temperature, solvent and impurity effects, especially the transition of $S_1 \rightarrow S_2$. Optical bleaching of cryptocyanine depends mainly on the saturation of $S_1 \rightarrow S_2$ transition, and is influenced by the population of the first triplet state as well. Therefore the thermal stability of the cryptocyanine-switched ruby laser is largely controlled by the solvent quenching rate of singlet states

我们的实验结果¹¹¹表明,调 Q 染料温度 升高时红宝石器件的输出能量降低,其原因 在于染料的强光消光系数随温度而增加,而 且能量的降低和消光系数的增加还因溶剂和 杂质而异。要进一步研究这一效应的机理,显 然需要分析染料分子激发态衰变过程的物理 模式以及弛豫速率与温度、溶剂、杂质的关 系。而且,由于调 Q 染料的光学漂白过程与 激光巨脉冲的形成过程是同时进行、相互制 约的,因此要定量计算染料溶液参数对激光 输出特性的影响,必须把激光器光子密度速 率方程、红宝石 R₁线反转粒子数速率方程与 染料各能级粒子数速率方程联立起来求解。

收稿日期: 1979年9月18日。

. 12 .

在染料调 Q 器件中, 归一化的平均速率 方程为(参见[2]):

$$\frac{dn}{dt} = w_{p}(1-n) - w_{s}(1+n) - w_{i}n\varphi$$

$$\frac{d\varphi}{dt} = -\left[\gamma_{s} + \gamma_{T} + \gamma_{d}(t)\right]\varphi$$

$$+ (1+n)w'_{i} + w_{i}n\varphi$$
(1)

式中各符号的意义如下:

- n=归一化反转比=(N₂-N₁)/N₀, N₂
 和 N₁分别为宝石中激发态与基态的 粒子数密度, N₀为铬离子总数密度
 φ=无量纲光子密度=2Φ/N₀, Φ是腔内
 - 光子数密度
- wp=光泵速率
- ws=自发辐射速率
- w's=在激光方向上很小立体角内的自发 辐射速率
- wi=R1线中心频率的感应跃迁速率

γa=染料损耗速率

- γ_T=输出损耗速率
- γs=腔内其他损耗速率的总和(包括散射、吸收、衍射、逸出等)

在巨脉冲出现的短时间内,光泵速率 w, 可视为常数, w_s、w'_s、w_i、γ_T、γ_s等也都是常 数,但染料的损耗速率 γ_a 既依赖于腔内光子 密度 φ, 又依赖于染料分子内部状态的变化 过程,这正是我们要着重处理的一个问题。

隐花菁溶液非线性光学 漂白的物理模式

在建立物理模式中我们参考了有关的工作^[3~5],分析了两个问题:

第一、激发态粒子的吸收以及三重态上 粒子数对于隐花菁开关温度、溶剂、杂质效应 的重要性。换句话说,如果不考虑 $S_1 \rightarrow S_2$ 的 跃迁和 $S_1 \rightarrow T_1$ 的系际交叉,上述因素对激 光输出性能的影响有多大?

我们根据 Frank-Condon 原理及隐花菁

吸收和发射光谱有几百埃 Stokes 频移的事 实^[10],先考虑一个不包括激发态吸收的四能 级模式,如图 1 所示。按 Morou^[6] 的实验和 理论计算,只有在微微秒脉冲下隐花菁谱线 才会有烧孔现象,因此下面我们全部按均匀 加宽谱线处理。S₀和 S₁分别是基态和第一 激发态,右上方角标表示振动量子数,直线表 示辐射跃迁,波状线表示无辐射跃迁。τ₁是 S₁的自发辐射寿命。τ_s是同一电子态内振动 弛豫寿命,τ_o是 S₁到 S₀的无辐射内转换寿 命。由此可以立即写出染料分子相对粒子数 的速率方程;

式中 $n_i = N_i/N_d$, i = 1、2、3、4, N_a 是单位体积内染料分子的总数,因而有

$$n_1 + n_2 + n_3 + n_4 = 1$$
 (3)

用微微秒超短脉冲测量,隐花菁甲醇溶 液 S_1 态的弛豫时间 $\tau_c \sim 50 \text{ ps}, \tau_s \sim 10 \text{ ps}^{(6)}, \text{m}$ $\tau_1 \simeq 4 \text{ns}^{(7)}, \text{所以} \tau_2 \sim 8 \text{ ps}, \tau_3 \sim 50 \text{ ps}, 相对于$ 我们器件激光巨脉冲的持续时间(~10 ns)小两到三个数量级。因此,用稳态解就足以精确地表示出各能级上的粒子数。在稳态下

$$n_{1} - n_{2} = \frac{1}{1 + Gi}$$
(4)
式中
$$G = \left(2 + \frac{\tau_{3}}{\tau_{s}} + \frac{\tau_{3}}{\tau_{f}}\right) \approx 2 + \frac{\tau_{3}}{\tau_{s}},$$
$$\frac{\tau_{3}}{\tau_{s}} \approx 5, \quad G \approx 7_{\circ}$$
$$\overline{m} \qquad i = I/I_{s},$$
$$I_{s} = \frac{1}{\sigma_{d}\tau_{2}} = 饱和参量$$
(5)
$$i = \frac{I}{I_{s}} = \frac{\varphi}{\varphi_{s}},$$
$$\varphi_{s} = \frac{2I_{s}}{cN_{0}} = 饱和光子密度$$

引入等效的饱和光子密度 $\varphi'_s = \varphi_s/G$,则

$$\Delta n = n_1 - n_2 = \frac{1}{1 + \varphi/\varphi'_s} = \frac{1}{1 + i'} \quad (6)$$
$$i' = \varphi/\varphi'_s$$

于是染料的消光系数

. 14 .

$$\alpha = \sigma_d N_d \Delta n = \frac{\sigma_d N_d}{1 + \varphi/\varphi'_s} \tag{7}$$

式中 σa 是染料分子在 6943 Å 的吸收截面。 对应的染料损耗速率

$$\gamma_{d} = \frac{\gamma_{d}(0)}{1 + \varphi/\varphi'_{s}} \tag{8}$$

式中 $\gamma_a(0)$ 是弱光下 ($\varphi/\varphi'_a \ll 1$) 的染料损耗 速率

 $\gamma_{d}(0) = -\frac{\ln T_{0}^{2}}{t_{1}} = \frac{2\sigma_{d}N_{d}l}{t_{1}}$ (9)

1是染料在光路上的厚度, ta 是光子在腔内往返一次的时间。

将 γa 代入方程(2)后,在 109-乙计算机 上用 BCY 语言进行数值计算。取 γa(0) = 8×10⁸/秒 (对应于染料弱光透过率约为 0.42), 计算出的激光巨脉冲及输出能量随 φ'_{s} 的变化见图 2 及图 3。由图可见,即使 φ'_{s} 在3×10⁻⁵~1×10⁻³内变化时输出能量的降 低还不到 20%,实际上对隐花菁甲醇溶液而 言,按 S_1 的弛豫速率计算,从0°C 到 60°C φ'_{s} 的变化范围不过是 2×10⁻⁴~5×10⁻⁴,在此 范围内能量的下降只有 6%,远小于实验结 果。因此,用四能级结构,仅考虑 $S_{0} \rightarrow S_{1}$ 饱 和参量随温度的变化,不足以解释激光能量 的下降,也无法解释强光下的"残余吸收现 象",因为在巨脉冲的初期 γ_{a} 已降到初始值 的 1~10%,而在峰值附近则远小于 1%,即 在激光最强时染料已基本上透明,这是不符 合实验事实的。

从图 3 可以看出, $q'_s > 5 \times 10^{-4}$ 后能量 随 q'_s 升高而下降的趋势是明显的, 但这样大 的饱和参量显然不是常温下 $S_1 \rightarrow S_0$ 的弛豫 速率所能达到的。因此我们应该考虑非单一 的吸收饱和过程。如果我们根据强光下残余 吸收现象考虑激发态的吸收,则由于更高激 发态的内转换速率要比 $S_1 \rightarrow S_0$ 大一个量级 以上,相应的饱和参量也要大一个量级,这 样,温度、溶剂对于饱和参量的影响就能从强 光透过率和输出能量的变化上明显地反映出 来了。

不过如果不考虑三重态的作用, 就无法 解释氧含量及溶剂纯度对强光透过率以至激 光输出能量的影响。在调 Q 过程中三重态的 粒子数对于提高强光透过率是很起作用的。 计算表明, 如果三重态的寿命足够长, 在巨脉 冲发展过程中几乎所有的粒子都聚集于三重 态, 使得染料近于完全漂白。但是众所周知, 三重态的寿命受杂质的影响很大, 而氧又是 溶液中最常见而又极有效的猝灭剂。因此, 染 料强光透过率及激光输出能量就会受到杂质 浓度特别是氧含量的影响。

由此引出的第二个问题是:既然 T_1 也有 粒子数集居,那么染料激发态的吸收主要是 $S_1 \rightarrow S_2$ 还是 $T_1 \rightarrow T_2$ 的跃迁? Giulliano 等^[53] 认为二者都有可能。但是实验事实既然是杂 质浓度高时强光透过率和激光能量下降,在 激发态吸收中 $T_1 \rightarrow T_2$ 的跃迁就不会是主要 的,因为杂质浓度愈高, T_1 的粒子数愈少。此 外,有实验测出钛 花菁 $T_1 \rightarrow T_2$ 的吸收比 $S_0 \rightarrow S_1$ 的吸收小一个量级,而许多有机染料 的 $S_1 \rightarrow S_2$ 吸收截面与 $S_0 \rightarrow S_1$ 同量级,这些 也可以作为一种旁证。

根据以上分析,我们建立了一个六能级 模式,如图 4 所示。图中 $\tau_i \ge S_1 \rightarrow T_1$ 的系 际交叉时间, $\tau_5 \ge T_1 \rightarrow S_0$ 的系际交叉时间, $\tau_6 \ge S_2$ 的寿命, $\sigma' \ge S_1$ 的吸收截面。其他 符号意义同前。各激发态相对粒子数速率方 程:

 T_1 的寿命 τ_9 较长, $\sim 10^{-8}$ 秒, 可以与激光巨脉冲宽度相比, 因而在巨脉冲阶段不能用稳态解。但 S_1, S_2 和 S_0° 的寿命都很短($< 10^{-10}$ 秒)。因此可以认为, 对应于每一个I值和 n_5 值, n_1, n_2, n_3, n_4, n_6 都达到了它们的准稳态解值, 即除了 $\frac{dn_5}{dt} \neq 0$ 以外, 方程(10)中其他各式的左边都等于零。此时,

• 15 •

$$\frac{dn_5}{dt} = \frac{\frac{\tau_3}{\tau_5\tau_i}i}{1+Gi} - \frac{1}{\tau_5} \left(1 + \frac{\frac{\tau_3\tau_5}{\tau_s\tau_i}i}{1+Gi}\right) n_5$$

$$n_1 - n_2 = \frac{1 - n_5}{1+Gi}$$

$$n_3 - n_6 = \frac{\frac{\tau_3}{\tau_s}(1 - n_5)i}{(1+Gi)(1+i')}$$

$$G = 2 + \frac{\tau_3}{\tau_s} + \frac{\tau_3}{\tau_s} \left(1 + \frac{i'}{1+i'}\right),$$

而

式中

$$i' = \frac{I}{I'_s} = \frac{\varphi}{\varphi'_s}, \quad I'_s = \frac{1}{\sigma' \tau_6}, \quad \varphi'_s = \frac{2I'_s}{cN_0}$$

 $i = \frac{I}{I_{e}} = \frac{\varphi}{\varphi_{e}},$

于是染料的损耗速率

$$\gamma_{d} = \gamma_{d}(0) \left[(n_{1} - n_{2}) + \frac{\sigma'}{\sigma} (n_{3} - n_{6}) \right]$$

= $\gamma_{d}(0) \frac{(1 - n_{5})}{1 + Gi} \left(1 + \frac{\sigma'}{\sigma} \frac{\tau_{3}}{\tau_{s}} \frac{i}{1 + i'} \right)$
(12)

可以看出,当 i 很大时 γ_a 中第一项 ≈ 0 , 而第 二项依然存在。这说明在巨脉冲阶段染料的 吸收主要来自于激发态吸收,而其大小则依 赖于 $S_1 \rightarrow S_2$ 的饱和吸收参量、三重态的粒子 数 n_5 以及 S_1 和 S_0 的吸收截面之比。第一 个因子与溶液的温度、溶剂的性质有密切关 系,而第二个因子对杂质的含量比较敏感。

弛豫速率的选取及其与溶剂 宏观物理参数的关系

1) 饱和参量 *q*_s

如果溶液中染料分子的内转换主要受溶 剂分子碰撞的控制,则 τ₂⁻¹ 应正比于碰撞频 率 *f*,按分子扩散理论

$$f = \frac{8RT}{3000\eta}$$
升/克分子·利

式中 n 是粘滞系数, R 是气体常数, T 是绝对 温度。而 n 和温度的关系按分子物理理论^[8] 应是

$$\eta = \eta_0 e^{\frac{W_0}{KT}}$$

式中 K 是波尔兹曼常数, Wo 是溶剂的激活 • 16 •

能。于是

$$f = \frac{8RT}{3000\eta_0} e^{-\frac{\mathbf{W}_{\bullet}}{KT}}$$
(13)

$$\pi_2^{-1} = \alpha f = \frac{8RT\alpha}{3000\eta_0} e^{-\frac{W_{\bullet}}{KT}}$$
(14)

式中 α 是一个比例系数。 W_0 和 η_0 可以根据 溶剂粘滞系数随温度的变化算出。已知在 室温下甲醇溶液中 $\tau_2 \sim 8 \times 10^{-12}$,而 $f=2.7 \times 10^{11}$,得甲醇溶液中的有效碰撞比 $a \approx 0.45$ 。假定有效碰撞比与溶剂的介电常数成 正比,则对乙醇溶液 $a \approx 0.34$ 。据此算出隐 花菁在甲醇和乙醇溶液中的饱和参量 φ_0 如下:

甲醇溶液	$\varphi_s = 5.4 \times 10^{-4} T e^{-\frac{1260}{T}}$	(15)
乙醇溶液	$\varphi_{s} = 6.8 \times 10^{-4} T e^{-\frac{1725}{T}}.$	(10)
2) Ti 和	$ au_5$	

 τ_i 和 τ_5 都是系际交叉速率的倒数。 Spaeth等^[10]曾推算出隐花菁的 τ_i =5.6× 10⁻¹⁰秒。但若选取这样的数值,染料分子在 巨脉冲前期就几乎全部聚集于三重态上了, 这样染料就近于完全漂白了。这说明上述数 值过小。我们认为,在隐花菁这一类分子中 $S_1 \rightarrow T_1$ 的速率尽管比较高,但毕竟是自旋禁 戒的,因此 τ_i^{-1} 虽然可以与 τ_i^{-1} 相比,但要小 于后者。对隐花菁 $\tau_f \approx 4 \times 10^{-9}$ 秒,所以 τ_i^{-1} 应 小于 2.5×10⁸/秒。我们取 $\tau_i^{-1} = 2 \times 10^8$ /秒。

τ₅ 在很大程度上取决于溶剂中的杂质, 特别是氧分子。这是熟知的实验事实。

实验表明^[11],氧在溶剂中的扩散系数及 速率常数对溶液的粘滞系数很不敏感,因此 我们略去了 τ_5 的温度变化,而只考虑了杂质 浓度的影响。根据溶液中氧饱和浓度和氧分 子速率常数的实测值,计算出无其他杂质时 甲醇和乙醇溶液中 τ_5^{-1} 分别为2×10⁸/秒和 1.6×10⁸/秒。考虑到其他杂质的存在,我们 还计算了 τ_5^{-1} 增加一倍时的激光输出。

3) $\frac{\tau_3}{\tau_c}$, $\frac{\tau_3}{\tau_5}$, $\frac{\tau_6}{\tau_2}$

这些比值应与溶剂的物理性质关系不

大,可视为常数,所以取常温下隐花菁--甲醇 溶液的已知数据代入计算,得

$$\frac{\tau_3}{\tau_s}=5, \quad \frac{\tau_3}{\tau_c}=1_\circ$$

τ6 与τ2 相比要差一个量级以上,我们取

$$\frac{\tau_6}{\tau_2}=0.1, \quad \frac{\sigma'}{\sigma}=1,$$

因而 $\varphi'_s = 10\varphi_s, i' = 0.1i_o$

数值计算结果

引进变量 $i = \varphi/\varphi_s$,将(1)、(2) 式加以变换,我们最终计算的方程组是

$$\begin{aligned} \frac{dn}{dt} &= w_{p}(1-n) - w_{s}(1+n) - w_{i}\varphi_{s}ni \\ \frac{di}{dt} &= -\left[\gamma_{s} + \gamma_{T} + \gamma_{d}(t)\right]i \\ &+ (1+n)w_{s}'/\varphi_{s} + w_{i}\varphi_{s}ni \\ \frac{dn_{5}}{dt} &= \frac{\frac{\tau_{3}}{\tau_{s}\tau_{i}}i}{1+Gi} - \frac{1}{\tau_{5}}\left(1 + \frac{\frac{\tau_{3}\tau_{5}}{\tau_{s}\tau_{i}}i}{1+Gi}\right)n_{5} \\ \gamma_{a}(t) &= \gamma_{a}(0)\frac{(1-n_{5})}{1+Gi} \\ &\times \left(1 + \frac{\sigma'}{\sigma} \frac{\tau_{3}}{\tau_{s}} \frac{i}{1+0.1i}\right) \\ G &= 2 + \frac{\tau_{3}}{\tau_{s}} + \frac{\tau_{3}}{\tau_{s}}\left(1 + \frac{0.1i}{1+0.1i}\right) \\ &= 7 + 5\left(1 + \frac{0.1i}{1+0.1i}\right) \\ &= 5.4 \times 10^{-4}Te^{-\frac{1220}{T}} \quad (\Pi \tilde{\mathbf{P}}) \\ 6.8 \times 10^{-4}Te^{-\frac{1725}{T}} \quad (\mathbf{Z}, \tilde{\mathbf{P}}) \end{aligned}$$
(16)

在 111 机上对以上方程组进行了数 值计 算, 得到 n, i, φ 、输出功率 P、输出能量 W、染 料吸收的能量E、染料的损耗速率 γ_a 及透过 率 T_a 等物理量随时间的变化。计算中所用 参数如下:

$$w_i = 2.9 \times 10^9$$
/秒

$$w_s = 2.3 \times 10^2 / 秒$$

 $w'_{s} = 2 \times 10^{-2} / \%$

 $\gamma_T = 7 \times 10^8 /$ 秒 (对应于输出端反射率 0.214), $\gamma_a(0) = 6 \times 10^8 /$ 秒。

腔长27厘米, 宝石长8厘米, 直径0.7

厘米。

光泵速率 w, 是一个需要在计算中调节 的量,在3×10³/秒~5×10³/秒内,它的变化 对输出能量的影响可以忽略不计。

图 5 和图 6 是激光巨脉冲及强光消光系数曲线随染料温度变化的典型例子。用甲醇 作溶剂时温度效应是比较显著的,强光消光 系数与初始值(6×10⁸/秒)相比也很大。

由图 7 可见, *q*₈ 是激光输出稳定性的主 要控制因子。在 *q*₈ 小的区域,输出能量对 染料温度的变化或杂质浓度的大小都不很敏 感。而在 *q*₈ 大的区域,器件输出的热稳定性 差,杂质浓度高的时候更是如此。这些都与 实验事实很符合。此外,*q*₈ 小则输出能量大, 因而要得到同样的输出能量可以用比较稀的 染料,而染料稀时吸收的能量少,升温慢,这 样又从另一方面增加了器件的稳定性。*q*₈ 的 大小主要决定于溶剂的粘性,因而在选择溶 剂时粘滞系数是一个首要的物理参数。

杂质浓度和腔内附加损耗的增加虽然都 造成了能量的下降,但这二者是不完全等价

17 .

图7 输出能量随隐花菁溶液饱和参量的变化

1	N
$2 - \gamma_s = 2 \times 10^8 / $	$\frac{\tau_5}{\tau}=5$
$3 - \gamma_s = 5 \times 10^8 / 秒$) ^T i
4-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	τ5 0 5
$5 - \gamma_s = 5 \times 10^8 / 秒$	$\tau_i = 2.5$

的。杂质浓度增加时,能量随 φ₀ 而下降的变 化率增加(温度升高时能量下降更快),而 γ₀ 的增加看来只是引起了整个曲线的下移,并 未明显改变其变化趋势(见图 7)。此外,图 8 清楚地表明了染料吸收的能量 *E* 随 γ₀ 的增 加而减少,随 τ₅/τ₁的增加而增加。因此,即 使初始输出能量一样,杂质浓度大时,能量随 点火次数的下降要更快,染料的工作寿命更 短。染料最小比消光系数 α_m 随各种 参数的 变化(见图9),也表明了 γ₀ 对染料强光消光系 数的作用远比杂质浓度的作用弱。因此从器

件的热稳定来说, 腔损耗可以不予考虑, 当然 从能量利用率来说, 腔附加损耗的增加显然 是不利的。

结 论

 隐花菁染料开关红宝石器件稳定性的主要控制因子是 φ_s,即溶剂对单态激发态的猝灭速率,因而选择溶剂的粘滞系数是重要的。粘滞系数愈大,饱和参量 φ_s 愈小,温度和杂质的影响及染料吸收的能量愈小,温升慢,染料工作寿命长,而且器件输出能量大。 在常用的有机溶剂中,乙醇是较好的一种。

2. 溶剂的纯度是影响器件热稳定性的 另一重要因子。在溶液中的影响最显著的是 氧含量,水也是一个可疑的对象。此外铁、铜等 金属离子对于许多染料也是有效的猝灭剂。 因此,用高纯度的溶剂,密封储存溶液,并且 用光胶染料盒是必要的。金属玻璃结构(用 橡皮或有机胶密封)的染料盒会使染料杂质 过多,因而不宜采用。

3. 在隐花菁的激发态吸收中,看来S₁
 →S₂的跃迁至少是主要的。隐花菁的光学漂
 白程度主要决定于S₁→S₂的吸收饱和,同
 时也受到三重态粒子数的调节。

(下转第11页)

• 18 •

最近, G. Martin 和 W. Hellwarth^[6] 曾 报导在多种液体及吸收红外光的玻璃中观察 到1.06 微米激光感生的热致位相光栅。如果 确实存在这种热效应,按前面的分析,对于该 报导中的多种物质也应存在这里所说的强激 光引起的负透镜效应。实验发现对于1.06 微米的激光,乙醇、水、三氯甲烷、苯、丙酮、甘 油、若丹明6G溶液…等,均不同程度地存在 此效应。其中乙醇和甘油效应最强,并且暗 斑的持续时间都近于相同。在几十至一百毫 秒左右。这似乎支持热效应是产生折射率不 均匀的原因这一看法。但对二硫化碳和四氯 化碳以及吸收1.06 微米辐射的玻璃 (GRB1 型)并未观察到同样的效应。可惜目前尚未 杳到关于这些物质对1.06 微米光波吸收的 可靠数据。而我们初步测量的结果表明这些 物质对1.06 微米都没有吸收。此外,我们还 观测了在 5320 Å 有强吸收的若丹明 6G 染料

溶液,发现确实有很强的负透镜效应,而且持续时间与其它液体相近。

如果液晶中确有热效应存在,那么,在四 波混频的实验中,当激光很强时,也会出 现[6]中所说的热致位相光栅迭加在由于分 子取向改变而产生的位相光栅之上。为测量 分子转向的弛豫时间,必须设法消除热致位 相光栅的影响。

参考文献

- [1] D. V. G. L. N. Rao, S. Jayaraman; Appl. Phys. Lett., 1973, 23, 539.
- [2] E. G. Hanson et al.; Appl. Phys., 1977. 14, 65.
- [3] G. K. L. Wong, Y. R. Shen; Phys. Rev., 1974, A10, 1277.
- [4] J. W. Shelton, Y. R. Shen; Phys. Rev., 1972, A5, 1867.
- [5] 初桂荫,朱化南等;《物理学报》, 1979, 28, 887.
- [6] G. Martin, W. Hellwarth; Appl. Phys. Lett., 1979, 34, 371.

(上接第18页)

参考文献

- [1] 赵燕曾,伍少明等; 《激光》, 1979, 6, No. 12, 23.
- [2] 《激光技术》,第十五章,天津大学精仪系编译,科学 出版社(1972)。
- [3] F. Gires; IEEE J. Quant. Electr., 1966, QE-2, No. 9, 624.
- [4] M. Hercher; Appl. Opt., 1967, 6, No. 5, 947.
- [5] C. R. Giulliano, L. D. Hess; *IEEE J. Quant. Electr.*, 1967, QE-3, No. 8, 358.

- [6] G. Morou; IEEE J. Quant. Electr., 1975, QE-11, No. 1, 1.
- [7] B. H. Soffer; J. Appl. Phys., 1964, 35, No. 8, 2551.
- [8] E.A.史特劳夫; 《分子物理学》(下册),高等教育出版社(1959).
- [9] Wett; Scientific Photography (1957).
- [10] M. L. Spaeth, W. R. Sooy; J. Chem. Phys., 1968, 48, No. 5, 2315.
- [11] W. R. Ware; J. Phys. Chem., 1962, 66, 455.